Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Elife ; 112022 11 08.
Article in English | MEDLINE | ID: covidwho-2110897

ABSTRACT

Public health emergencies like SARS, MERS, and COVID-19 have prioritized surveillance of zoonotic coronaviruses, resulting in extensive genomic characterization of coronavirus diversity in bats. Sequencing viral genomes directly from animal specimens remains a laboratory challenge, however, and most bat coronaviruses have been characterized solely by PCR amplification of small regions from the best-conserved gene. This has resulted in limited phylogenetic resolution and left viral genetic factors relevant to threat assessment undescribed. In this study, we evaluated whether a technique called hybridization probe capture can achieve more extensive genome recovery from surveillance specimens. Using a custom panel of 20,000 probes, we captured and sequenced coronavirus genomic material in 21 swab specimens collected from bats in the Democratic Republic of the Congo. For 15 of these specimens, probe capture recovered more genome sequence than had been previously generated with standard amplicon sequencing protocols, providing a median 6.1-fold improvement (ranging up to 69.1-fold). Probe capture data also identified five novel alpha- and betacoronaviruses in these specimens, and their full genomes were recovered with additional deep sequencing. Based on these experiences, we discuss how probe capture could be effectively operationalized alongside other sequencing technologies for high-throughput, genomics-based discovery and surveillance of bat coronaviruses.


Subject(s)
COVID-19 , Chiroptera , Animals , Phylogeny , Genetic Variation , Sequence Analysis, DNA , Genome, Viral/genetics , High-Throughput Nucleotide Sequencing , Genomics
2.
Int J Infect Dis ; 114: 51-54, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1487755

ABSTRACT

Mutations in emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages can interfere with laboratory methods used to generate viral genome sequences for public health surveillance. We identified 20 mutations that are widespread in variant of concern lineages and affect widely used sequencing protocols by the ARTIC network and Freed et al. Three of these mutations disrupted sequencing of P.1 lineage specimens during a recent outbreak in British Columbia, Canada. We provide laboratory validation of protocol modifications that restored sequencing performance. The study findings indicate that genomic sequencing protocols require immediate updating to address emerging mutations. This work also suggests that routine monitoring and protocol updates will be necessary as SARS-CoV-2 continues to evolve. The bioinformatic and laboratory approaches used here provide guidance for this kind of assay maintenance.


Subject(s)
COVID-19 , SARS-CoV-2 , British Columbia , Genome, Viral/genetics , Genomics , Humans , Mutation
3.
EBioMedicine ; 66: 103316, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1163668

ABSTRACT

BACKGROUND: Angiotensin converting enzyme 2 (ACE2) protein serves as the host receptor for SARS-CoV-2, with a critical role in viral infection. We aim to understand population level variation of nasopharyngeal ACE2 transcription in people tested for COVID-19 and the relationship between ACE2 transcription and SARS-CoV-2 viral load, while adjusting for expression of: (i) the complementary protease, Transmembrane serine protease 2 (TMPRSS2), (ii) soluble ACE2, (iii) age, and (iv) biological sex. The ACE2 gene was targeted to measure expression of transmembrane and soluble transcripts. METHODS: A cross-sectional study of n = 424 "participants" aged 1-104 years referred for COVID-19 testing was performed in British Columbia, Canada. Patients who tested positive for COVID-19 were matched by age and biological sex to patients who tested negative. Viral load and host gene expression were assessed by quantitative reverse-transcriptase polymerase chain reaction. Bivariate analysis and multiple linear regression were performed to understand the role of nasopharyngeal ACE2 expression in SARS-CoV-2 infection. FINDINGS: Analysis showed no association between age and nasopharyngeal ACE2 transcription in those who tested negative for COVID-19 (P = 0•092). Mean relative transcription of transmembrane (P = 0•00012) and soluble (P<0•0001) ACE2 isoforms, as well as TMPRSS2 (P<0•0001) was higher in COVID-19-negative participants than COVID--19 positive ones, yielding a negative correlation between targeted host gene expression and positive COVID-19 diagnosis. In bivariate analysis of COVID-19-positive participants, transcription of transmembrane ACE2 positively correlated with SARS-CoV-2 viral RNA load (B = 0•49, R2=0•14, P<0•0001), transcription of soluble ACE2 negatively correlated (B= -0•85, R2= 0•26, P<0•0001), and no correlation was found with TMPRSS2 transcription (B= -0•042, R2=<0•10, P = 0•69). Multivariable analysis showed that the greatest viral RNA loads were observed in participants with high transmembrane ACE2 transcription (Β= 0•89, 95%CI: [0•59 to 1•18]), while transcription of the soluble isoform appears to protect against high viral RNA load in the upper respiratory tract (Β= -0•099, 95%CI: [-0•18 to -0•022]). INTERPRETATION: Nasopharyngeal ACE2 transcription plays a dual, contrasting role in SARS-CoV-2 infection of the upper respiratory tract. Transcription of the transmembrane ACE2 isoform positively correlates, while transcription of the soluble isoform negatively correlates with viral RNA load after adjusting for age, biological sex, and transcription of TMPRSS2. FUNDING: This project (COV-55) was funded by Genome British Columbia as part of their COVID-19 rapid response initiative.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19 Testing , COVID-19/genetics , Nasopharynx/virology , Adult , Age Factors , Aged , Aged, 80 and over , British Columbia , COVID-19/virology , Cross-Sectional Studies , Female , Host-Pathogen Interactions/genetics , Humans , Male , Middle Aged , Nasopharynx/physiology , RNA, Viral/analysis , Serine Endopeptidases/genetics , Transcription, Genetic , Viral Load
4.
J Clin Virol ; 131: 104581, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-726607

ABSTRACT

INTRODUCTION: During the first month of the SARS-CoV-2 outbreak, rapid development of PCR-based diagnostic tests became a global priority so that timely diagnosis, isolation, and contact tracing could minimize the advancing pandemic surge. Designing these tests for broad, long-term detection was complicated by limited information about the novel virus' genome sequence and how it might mutate during global spread and adaptation to humans. METHODS: We assessed eight widely adopted lab developed PCR tests for SARS-CoV-2 against 15,001 SARS-CoV-2 genome sequences. Using a custom bioinformatic pipeline called PCR_strainer, we identified all mismatches and sequence variants in genome locations targeted by 15 sets of primer/probe oligonucleotides from these assays. RESULTS: For 12 out of 15 primer/probe sets, over 98 % of SARS-CoV-2 genomes had no mismatches. Two primer/probe sets contained a single mismatch in the reverse primer that was present in over 99 % of genomes. One primer/probe set targeted a location with extensive polymorphisms with 23 sequence observed variants at the forward primer location. One of these variants, which contains three nucleotide mismatches, arose in February as part of the emergence of a viral clade and was present in 18.8 % of the genomes we analyzed. DISCUSSION: Most early PCR diagnostic tests for SARS-CoV-2 remain inclusive of circulating viral diversity, but three assays with extensive mismatches highlight assay design challenges for novel pathogens and provide valuable lessons for PCR assay design during future outbreaks. Our bioinformatics pipeline is also presented as a useful general-purpose tool for assessing PCR diagnostics assays against circulating strains.


Subject(s)
Betacoronavirus/genetics , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Oligonucleotides/genetics , Pneumonia, Viral/diagnosis , Real-Time Polymerase Chain Reaction/methods , COVID-19 , COVID-19 Testing , Computational Biology , Computer Simulation , Coronavirus Infections/virology , Genome, Viral , Humans , Pandemics , Pneumonia, Viral/virology , RNA, Viral , SARS-CoV-2 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL